Measurement of the ²⁰⁸Pb(⁶⁴Ni, n)²⁷¹Ds (Z = 110) Excitation Function

C. M. Folden III^{1,2}, K. E. Gregorich¹, Ch. E. Düllmann^{1,2}, H. Mahmud¹, G. K. Pang^{1,2}, J. M. Schwantes^{1,2}, R. Sudowe³, P. M. Zielinski^{1,2}, H. Nitsche^{1,2}, and D. C. Hoffman^{1,2}

In preparation for an experiment on the production of element $^{272}111$ in the 208 Pb(65 Cu, n) reaction [1], the excitation function for the 208 Pb(64 Ni, n) 271 Ds reaction was measured at the LBNL 88-Inch Cyclotron using the Berkeley Gas-filled Separator. Previous work established the cross section at one beam energy [2], and two new energies were measured in the current work. The lab-frame beam energies (Ecot) in the center of the 470-µg/cm² targets (98.4% ²⁰⁸Pb, 1.1% ²⁰⁷Pb, 0.5% ²⁰⁶Pb) were 314.3 MeV and 311.5 MeV, leading to compound nucleus excitation energies of 16.2 MeV and 14.1 MeV, respectively (masses taken from Ref. [3]). The total ⁶⁴Ni¹⁴⁺ beam doses were 2.9×10^{17} and 2.3×10^{17} , respectively.

Preliminary results are available, and events assigned to the decay of ²⁷¹Ds are shown in Fig. 1. Chains 1 and 2 were observed at $E_{cot} = 314.3$ MeV and chains 3-7 were observed at $E_{cot} = 311.5$ MeV. These decay chains show excellent agreement with previously published data on the decay of this nucleus [2,4-5]. ²⁷¹Ds was observed to decay via alpha particle emission with a half-life of $1.6^{+0.9}_{-0.5}$ ms. Decay of the known $^{271\text{m}}\text{Ds}$ isomer ($t_{1/2} = 56 \text{ ms}$, $E_{1/2} = 10709 \text{ keV}$) was not observed. ^{267}Hs decayed with two half-lives of 55^{+32}_{-18} ms and $0.9^{+12}_{-4.5}$ ms. The latter may be due to an isomer but the current data are inconclusive. Only the decay of isomeric ^{263m}Sg was observed. The observed ²⁵⁹Rf decays are consistent with known data, as are the ²⁵⁵No decays. Some of the latter may be due to random correlations, as the correlation time is long. The average magnetic rigidity of the evaporation residues in helium was 2.09 T m.

The observed cross sections at $E_{cot} = 314.3$ MeV and 311.5 MeV were $7.7^{+10}_{-5.2}$ pb and 20^{+15}_{-11} pb, respectively. Chain 3 was not included in the latter cross section because it was observed with a set of targets later determined to be too thick for an accurate cross section measurement. These data, and the two events at $E_{cot} = 309.2 \text{ MeV}$ with cross section $8.3^{+11}_{-5.3}$ pb measured in Ref. [2], establish an excitation function for the 208 Pb(64 Ni, n) 271 Ds reaction.

REFERENCES

- [1] C. M. Folden III et al., this report.
- T. N. Ginter et al., Phys. Rev. C 67, 064609 (2003).
- W. D. Myers and W. J. Swiatecki, Nucl. Phys. A601, 141
- [4] S. Hofmann, Rep. Prog. Phys. 61, 639 (1998).
- [5] K. Morita et al., in Proceedings of the International Symposium on Frontiers of Collective Motions (CM2002), Aizu, Japan, 2002, edited by H. Sagawa and H. Iwasaki, (World Scientific, New Jersey, 2003), p. 140.

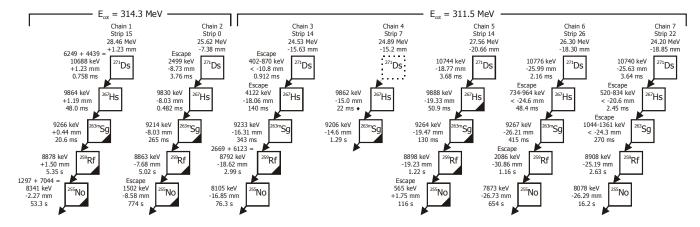


FIG. 1: Events attributed to 271 Ds in the 208 Pb(64 Ni, n) reaction. The notation x + y = z keV indicates an escape alpha event where xkeV was deposited in a strip detector and y keV was deposited in an upstream detector, with sum z keV. A black triangle in the lower right corner indicates the decay was observed with the beam off. Chain 4 was not observed in its entirety due to a design flaw in the data acquisition system. The lifetime marked with a diamond (*) is the sum of the ²⁷¹Ds and ²⁶⁷Hs lifetimes.

 $^{^{1}}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Chemistry, University of California, Berkeley, California 94720 ³ Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720